Criteria for Accrediting Engineering Programs, 2021 – 2022

Introduction

These criteria apply to all accredited engineering programs. Furthermore, these criteria are intended to foster the systematic pursuit of improvement in the quality of engineering education that satisfies the needs of its constituencies in a dynamic and competitive environment. It is the responsibility of the institution seeking accreditation of an engineering program to demonstrate clearly that the program meets the following criteria.

This document contains three sections:

The first section includes important definitions.

The second section contains the General Criteria for Baccalaureate Level Programs that must be satisfied by all programs accredited by the Engineering Accreditation Commission of ABET and the General Criteria for Master’s Level Programs that must be satisfied by those programs seeking advanced level accreditation.

The third section contains the Program Criteria that must be satisfied by certain programs. The applicable Program Criteria are determined by the technical specialties indicated by the title of the program. Overlapping requirements need to be satisfied only once.

Definitions

While ABET recognizes and supports the prerogative of institutions to adopt and use the terminology of their choice, it is necessary for ABET volunteers and staff to have a consistent understanding of terminology. With that purpose in mind, the Commissions will use the following basic definitions:

Program Educational Objectives
Program educational objectives are broad statements that describe what graduates are expected to attain within a few years after graduation. Program educational objectives are based on the needs of the program’s constituencies.

Student Outcomes
Student outcomes describe what students are expected to know and be able to do by the time of graduation. These relate to the knowledge, skills, and behaviors that students acquire as they progress through the program.

Assessment
Assessment is one or more processes that identify, collect, and prepare data to evaluate the attainment of student outcomes. Effective assessment uses relevant direct, indirect, quantitative and qualitative measures as appropriate to the outcome being measured. Appropriate sampling methods may be used as part of an assessment process.

Evaluation
Evaluation is one or more processes for interpreting the data and evidence accumulated through assessment processes. Evaluation determines the extent to which student outcomes are being attained. Evaluation results in decisions and actions regarding program improvement.

The Engineering Accreditation Commission of ABET recognizes that its constituents may consider certain terms to have certain meanings; however, it is necessary for the Engineering Accreditation Commission to have consistent terminology. Thus, the Engineering Accreditation Commission will use the following definitions in applying the criteria:

Basic Science
Basic sciences are disciplines focused on knowledge or understanding of the fundamental aspects of natural phenomena. Basic sciences consist of chemistry and physics and other natural sciences including life, earth, and space sciences.

College-Level Mathematics
College-level mathematics consists of mathematics that requires a degree of mathematical sophistication at least equivalent to that of introductory calculus. For illustrative purposes, some examples of college-level mathematics include calculus, differential equations, probability, statistics, linear algebra, and discrete mathematics.

Complex Engineering Problems
Complex engineering problems include one or more of the following characteristics: involving wide-ranging or conflicting technical issues, having no obvious solution, addressing problems not encompassed by current standards and codes, involving diverse groups of stakeholders, including many component parts or sub-problems, involving multiple disciplines, or having significant consequences in a range of contexts.

Engineering Design
Engineering design is a process of devising a system, component, or process to meet desired needs and specifications within constraints. It is an iterative, creative, decision-making process in which the basic sciences, mathematics, and engineering sciences are applied to convert resources into solutions. Engineering design involves identifying opportunities, developing requirements, performing analysis and synthesis, generating multiple solutions, evaluating solutions against requirements, considering risks, and making trade- offs, for the purpose of obtaining a high-quality solution under the given circumstances. For illustrative purposes only, examples of possible constraints include accessibility, aesthetics, codes, constructability, cost, ergonomics, extensibility, functionality, interoperability, legal considerations, maintainability, manufacturability, marketability, policy, regulations, schedule, standards, sustainability, or usability.

Engineering Science
Engineering sciences are based on mathematics and basic sciences but carry knowledge further toward creative application needed to solve engineering problems. These studies provide a bridge between mathematics and basic sciences on the one hand and engineering practice on the other.

Team
A team consists of more than one person working toward a common goal and should include individuals of diverse backgrounds, skills, or perspectives.

I. General Criteria for Baccalaureate Level Programs

All programs seeking accreditation from the Engineering Accreditation Commission of ABET must demonstrate that they satisfy all of the following General Criteria for Baccalaureate Level Programs.

Criterion 1. Students

Student performance must be evaluated. Student progress must be monitored to foster success in attaining student outcomes, thereby enabling graduates to attain program educational objectives. Students must be advised regarding curriculum and career matters.

The program must have and enforce policies for accepting both new and transfer students, awarding appropriate academic credit for courses taken at other institutions, and awarding appropriate academic credit for work in lieu of courses taken at the institution. The program must have and enforce procedures to ensure and document that students who graduate meet all graduation requirements.

Criterion 2. Program Educational Objectives

The program must have published program educational objectives that are consistent with the mission of the institution, the needs of the program’s various constituencies, and these criteria. There must be a documented, systematically utilized, and effective process, involving program constituencies, for the periodic review of these program educational objectives that ensures they remain consistent with the institutional mission, the program’s constituents’ needs, and these criteria.

Criterion 3. Student Outcomes

The program must have documented student outcomes that support the program educational objectives. Attainment of these outcomes prepares graduates to enter the professional practice of engineering. Student outcomes are outcomes (1) through (7), plus any additional outcomes that may be articulated by the program.

  1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
  2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
  3. an ability to communicate effectively with a range of audiences
  4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts
  5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives
  6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions
  7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Criterion 4. Continuous Improvement

The program must regularly use appropriate, documented processes for assessing and evaluating the extent to which the student outcomes are being attained. The results of these evaluations must be systematically utilized as input for the program’s continuous improvement actions. Other available information may also be used to assist in the continuous improvement of the program.

Criterion 5. Curriculum

The curriculum requirements specify subject areas appropriate to engineering but do not prescribe specific courses. The program curriculum must provide adequate content for each area, consistent with the student outcomes and program educational objectives, to ensure that students are prepared to enter the practice of engineering. The curriculum must include:

  1. a minimum of 30 semester credit hours (or equivalent) of a combination of college-level mathematics and basic sciences with experimental experience appropriate to the program.
  2. a minimum of 45 semester credit hours (or equivalent) of engineering topics appropriate to the program, consisting of engineering and computer sciences and engineering design, and utilizing modern engineering tools.
  3. a broad education component that complements the technical content of the curriculum and is consistent with the program educational objectives.
  4. a culminating major engineering design experience that 1) incorporates appropriate engineering standards and multiple constraints, and 2) is based on the knowledge and skills acquired in earlier course work.

Criterion 6. Faculty

The program must demonstrate that the faculty members are of sufficient number and they have the competencies to cover all of the curricular areas of the program. There must be sufficient faculty to accommodate adequate levels of student-faculty interaction, student advising and counseling, university service activities, professional development, and interactions with industrial and professional practitioners, as well as employers of students.

The program faculty must have appropriate qualifications and must have and demonstrate sufficient authority to ensure the proper guidance of the program and to develop and implement processes for the evaluation, assessment, and continuing improvement of the program. The overall competence of the faculty may be judged by such factors as education, diversity of backgrounds, engineering experience, teaching effectiveness and experience, ability to communicate, enthusiasm for developing more effective programs, level of scholarship, participation in professional societies, and licensure as Professional Engineers.

Criterion 7. Facilities

Classrooms, offices, laboratories, and associated equipment must be adequate to support attainment of the student outcomes and to provide an atmosphere conducive to learning. Modern tools, equipment, computing resources, and laboratories appropriate to the program must be available, accessible, and systematically maintained and upgraded to enable students to attain the student outcomes and to support program needs. Students must be provided appropriate guidance regarding the use of the tools, equipment, computing resources, and laboratories available to the program.

The library services and the computing and information infrastructure must be adequate to support the scholarly and professional activities of the students and faculty.

Criterion 8. Institutional Support

Institutional support and leadership must be adequate to ensure the quality and continuity of the program.

Resources including institutional services, financial support, and staff (both administrative and technical) provided to the program must be adequate to meet program needs. The resources available to the program must be sufficient to attract, retain, and provide for the continued professional development of a qualified faculty. The resources available to the program must be sufficient to acquire, maintain, and operate infrastructures, facilities, and equipment appropriate for the program, and to provide an environment in which student outcomes can be attained.

II. General Criteria for Master’s Level and Integrated Baccalaureate-Master’s Level Engineering Programs

Programs seeking accreditation at the master’s level from the Engineering Accreditation Commission of ABET must demonstrate that they satisfy the following criteria, including all of the aspects relevant to integrated baccalaureate-master’s programs or stand-alone master’s programs, as appropriate. Programs must have published program educational objectives and student outcomes.

Criteria Applicable to Integrated Baccalaureate-Master’s Level Engineering Programs

Engineering programs that offer integrated baccalaureate-master’s programs must meet all of the General Criteria for Baccalaureate Level Programs and the Program Criteria applicable to the program name, regardless of whether students in these programs receive both baccalaureate and master’s degrees or only master’s degrees during their programs of study. In addition, these programs must meet all of the following criteria. If any students are admitted into the master’s portion of the combined program without having completed the integrated baccalaureate portion, they must meet the criteria given below.

Criteria Applicable to all Engineering Programs Awarding Degrees at the Master’s Level

Students and Curriculum

The master’s program must have and enforce procedures for verifying that each student has completed a set of post-secondary educational and professional experiences that:

  1. Supports the attainment of student outcomes of Criterion 3 of the general criteria for baccalaureate level engineering programs, and
  2. Includes at least 30 semester credit hours (or equivalent) of math and basic science (basic science includes the biological, chemical, and physical sciences), as well as at least 45 semester credit hours (or equivalent) of engineering topics and a major design experience that meets the requirements of Criterion 5 of the general criteria for baccalaureate level engineering programs.

If the student has graduated from an EAC of ABET accredited baccalaureate program, the presumption is that items (a) and (b) above have been satisfied.

The master’s level engineering program must have and enforce policies and procedures ensuring that a program of study with specific educational goals is developed for each student. Student performance and progress toward completion of their programs of study must be monitored and evaluated. The program must have and enforce procedures to ensure and document that students who graduate meet all graduation requirements.

The master’s level engineering program must require each student to demonstrate a mastery of a specific field of study or area of professional practice consistent with the master’s program name and at a level beyond the minimum requirements of baccalaureate level programs.

The master’s level engineering program of study must require the completion of at least 30 semester hours (or equivalent) beyond the baccalaureate program.

Each student’s overall program of post-secondary study must satisfy the curricular components of the baccalaureate level program criteria relevant to the master’s level program name.

Program Quality

The master’s level engineering program must have a documented and operational process for assessing, maintaining and enhancing the quality of the program.

Faculty

The master’s level engineering program must demonstrate that the faculty members are of sufficient number and that they have the competencies to cover all of the curricular areas of the program. Faculty teaching graduate level courses must have appropriate educational qualifications by education or experience. The program must have sufficient faculty to accommodate adequate levels of student-faculty interaction, student advising and counseling, university service activities, professional development, and interactions with industrial and professional practitioners, as well as employers of students.

The master’s level engineering program faculty must have appropriate qualifications and must have and demonstrate sufficient authority to ensure the proper guidance of the program. The overall competence of the faculty may be judged by such factors as education, diversity of backgrounds, engineering experience, teaching effectiveness and experience, ability to communicate, level of scholarship, participation in professional societies, and licensure.

Facilities

Means of communication with students, and student access to laboratory and other facilities, must be adequate to support student success in the program, and to provide an atmosphere conducive to learning. These resources and facilities must be representative of current professional practice in the discipline. Students must have access to appropriate training regarding the use of the resources available to them.

The library and information services, computing and laboratory infrastructure, and equipment and supplies must be available and adequate to support the education of the students and the scholarly and professional activities of the faculty.

Remote or virtual access to laboratories and other resources may be employed in place of physical access when such access enables accomplishment of the program’s educational activities.

Institutional Support

Institutional support and leadership must be adequate to ensure the quality and continuity of the program. Resources including institutional services, financial support, and staff (both administrative and technical) provided to the program must be adequate to meet program needs. The resources available to the program must be sufficient to attract, retain, and provide for the continued professional development of a qualified faculty. The resources available to the program must be sufficient to acquire, maintain, and operate infrastructure, facilities, and equipment appropriate for the program, and to provide an environment in which student learning outcomes can be attained.

III. Program Criteria

Each program must satisfy applicable Program Criteria (if any). Program Criteria provide the specificity needed for interpretation of the general criteria as applicable to a given discipline. Requirements stipulated in the Program Criteria are limited to the areas of curricular topics and faculty qualifications. If a program, by virtue of its title, becomes subject to two or more sets of Program Criteria, then that program must satisfy each set of Program Criteria; however, overlapping requirements need to be satisfied only once.

  • Aerospace and Similarly Named Engineering Programs

    Lead Society: American Institute of Aeronautics and Astronautics

    These program criteria apply to engineering programs that include “aerospace,” “aeronautical,” “astronautical,” or similar modifiers in their titles.

    1. Curriculum
    Aeronautical engineering or similarly named engineering programs must include the following curricular topics in sufficient depth for engineering practice: aerodynamics, aerospace materials, structures, propulsion, flight mechanics, and stability and control.

    Astronautical engineering or similarly named engineering programs must include the following curricular topics in sufficient depth for engineering practice: orbital mechanics, space environment, attitude determination and control, telecommunications, space structures, and rocket propulsion.

    Aerospace engineering programs or similarly named engineering programs, which combine aeronautical engineering and astronautical engineering topics, must include all curricular topics in sufficient depth for engineering practice in one of the areas—aeronautical engineering or astronautical engineering as described above—and, in addition, similar depth in at least two topics from the other area.

    The major design experience must include topics appropriate to the program name.

    2. Faculty
    The program must demonstrate that faculty members teaching upper-division courses have an understanding of current professional practice in the aerospace industry.

  • Agricultural and Similarly Named Engineering Programs

    Lead Society: American Society of Agricultural and Biological Engineers

    These program criteria apply to engineering programs that include “agricultural,” “forest,” “agroindustrial” or similar modifiers in their titles.

    1. Curriculum
    The curriculum must include mathematics through differential equations, biological and engineering sciences consistent with the program educational objectives and applications in agriculture, aquaculture, forestry, human, or natural resources.

    2. Faculty
    The program shall demonstrate that those faculty members teaching courses that are primarily design in content are qualified to teach the subject matter by virtue of education and experience or professional licensure.

  • Architectural and Similarly Named Engineering Programs

    Lead Society: American Society of Civil Engineers Cooperating Society: American Society of Heating, Refrigerating, and Air-Conditioning Engineers

    These program criteria apply to engineering programs that include “architectural” or similar modifiers in their titles.

    1. Curriculum
    The program must demonstrate that graduates can apply mathematics through differential equations, calculus-based physics, and chemistry. The four basic architectural engineering curriculum areas are building structures, building mechanical systems, building electrical systems, and construction/construction management. Graduates are expected to reach the synthesis (design) level in one of these areas, the application level in a second area, and the comprehension level in the remaining two areas. The engineering topics required by the general criteria shall support the engineering fundamentals of each of these four areas at the specified level. Graduates are expected to discuss the basic concepts of architecture in a context of architectural design and history.

    The design level must be in a context that:

    (a) Considers the systems or processes from other architectural engineering curricular areas,
    (b) Works within the overall architectural design,
    (c) Includes communication and collaboration with other design or construction team members,
    (d) Includes computer-based technology and considers applicable codes and standards, and
    (e) Considers fundamental attributes of building performance and sustainability.

    2. Faculty
    The program must demonstrate that faculty teaching courses that are primarily engineering design in content are qualified to teach the subject matter by virtue of professional licensure, or by education and design experience. It must also demonstrate that the majority of the faculty members teaching architectural design courses are qualified to teach the subject matter by virtue of professional licensure, or by education and design experience.

  • Bioengineering and Biomedical and Similarly Named Engineering Programs

    Lead Society: Biomedical Engineering Society Cooperating Societies: American Ceramic Society, American Institute of Chemical Engineers, American Society of Agricultural and Biological Engineers, American Society of Mechanical Engineers, and Institute of Electrical and Electronics Engineers

    These program criteria apply to engineering programs that include “bioengineering,” “biomedical,” or similar modifiers in their titles.

    1. Curriculum
    The structure of the curriculum must provide both breadth and depth across the range of engineering and science topics consistent with the program educational objectives and student outcomes.

    The curriculum must include experience in:

    (a) Applying principles of engineering, biology, human physiology, chemistry, calculus-based physics, mathematics (through differential equations) and statistics;
    (b) Solving bio/biomedical engineering problems, including those associated with the interaction between living and non-living systems;
    (c) Analyzing, modeling, designing, and realizing bio/biomedical engineering devices, systems, components, or processes; and
    (d) Making measurements on and interpreting data from living systems.

  • Biological and Similarly Named Engineering Programs

    Lead Society: American Society of Agricultural and Biological Engineers Cooperating Societies: American Academy of Environmental Engineers and Scientists, American Ceramic Society, American Institute of Chemical Engineers, American Society of Civil Engineers, American Society of Mechanical Engineers, Biomedical Engineering Society, CSAB, Institute of Electrical and Electronics Engineers, Institute of Industrial and Systems Engineers, and Minerals, Metals, and Materials Society

    These program criteria apply to engineering programs that include “biological,” “biological systems,” “food,” or similar modifiers in their titles with the exception of bioengineering and biomedical engineering programs.

    1. Curriculum
    The curriculum must include mathematics through differential equations, college-level chemistry and biology, advanced biological sciences, and applications of engineering to biological systems.

    2. Faculty
    The program shall demonstrate that those faculty members teaching courses that are primarily design in content are qualified to teach the subject matter by virtue of education and experience or professional licensure.

  • Chemical, Biochemical, Biomolecular and Similarly Named Engineering Programs

    Lead Society: American Institute of Chemical Engineers

    These program criteria apply to engineering programs that include “chemical,” “biochemical,” “biomolecular,” or similar modifiers in their titles.

    1. Curriculum
    The curriculum must include:

    a) Applications of mathematics, including differential equations and statistics to engineering problems.
    b) College-level chemistry and physics courses, with some at an advanced level, as appropriate to the objectives of the program.
    c) Engineering application of these sciences to the design, analysis, and control of processes, including the hazards associated with these processes.

    Programs with biochemical, biomolecular, or similar modifiers in their titles must also include biologically-based engineering applications in their curriculum as appropriate to the program’s name and educational objectives.

  • Civil and Similarly Named Engineering Programs

    Lead Society: American Society of Civil Engineers

    These program criteria apply to engineering programs that include “civil” or similar modifiers in their titles.

    1. Curriculum
    The curriculum must prepare graduates to apply knowledge of mathematics through differential equations, calculus-based physics, chemistry, and at least one additional area of basic science; apply probability and statistics to address uncertainty; analyze and solve problems in at least four technical areas appropriate to civil engineering; conduct experiments in at least two technical areas of civil engineering and analyze and interpret the resulting data; design a system, component, or process in at least two civil engineering contexts; include principles of sustainability in design; explain basic concepts in project management, business, public policy, and leadership; analyze issues in professional ethics; and explain the importance of professional licensure.

    2. Faculty
    The program must demonstrate that faculty teaching courses that are primarily design in content are qualified to teach the subject matter by virtue of professional licensure, or by education and design experience. The program must demonstrate that it is not critically dependent on one individual.

  • Construction and Similarly Named Engineering Programs

    Lead Society: American Society of Civil Engineers

    These program criteria apply to engineering programs that include “construction” or similar modifiers in their titles.

    1. Curriculum
    The program must prepare graduates to apply knowledge of mathematics through differential and integral calculus, probability and statistics, general chemistry, and calculus-based physics; to analyze and design construction processes and systems in a construction engineering specialty field, applying knowledge of methods, materials, equipment, planning, scheduling, safety, and cost analysis; to explain basic legal and ethical concepts and the importance of professional engineering licensure in the construction industry; to explain basic concepts of management topics such as economics, business, accounting, communications, leadership, decision and optimization methods, engineering economics, engineering management, and cost control.

    2. Faculty
    The program must demonstrate that the majority of faculty teaching courses that are primarily design in content are qualified to teach the subject matter by virtue of professional licensure, or by education and design experience. The faculty must include at least one member who has had full-time experience and decision-making responsibilities in the construction industry.

  • Cybersecurity Engineering and Similarly Named Engineering Programs

    Co-Lead Societies: Institute of Electrical and Electronics Engineers, CSAB, International Council on Systems Engineering (INCOSE)

    These program criteria apply to engineering programs that include “cybersecurity”, “computer security”, “cyber operations”, “information assurance”, “information security”, or similar modifiers in their titles.

    1. Curriculum
    The structure of the curriculum must provide both breadth and depth across the range of engineering topics implied by the title of the program.
    The curriculum must include:

    • Probability, statistics, and cryptographic topics including applications appropriate to the program.
    • Discrete mathematics and specialized mathematics appropriate to the program, such as, abstract algebra, information theory, number theory, complexity theory and finite fields.
    • Engineering topics necessary to determine cybersecurity requirements and to analyze, design, test and protect complex devices and systems that incorporate hardware, software, and human components.
    • Application of protective technologies and forensic techniques
    • Analysis and evaluation of components and systems with respect to security and to maintaining operations in the presence of risks and threats
    • Consideration of legal, regulatory, privacy, ethics, and human behavior topics as appropriate to the program.

    The curriculum must provide both breadth and depth across the range of engineering and computing topics necessary for the application of computer security principles and practices to the design, implementation and operation of the physical, software, and human components of a system, as appropriate to the program.

    2. Faculty
    The program must demonstrate that faculty members teaching core engineering topics understand methods of engineering design, engineering problem solving, and engineering practice with specific relevance to security.

  • Electrical, Computer, Communications, Telecommunication(s) and Similarly Named Engineering Programs

    Lead Society: Institute of Electrical and Electronics Engineers Cooperating Society for Computer Engineering Programs: CSAB

    These program criteria apply to engineering programs that include “electrical,” “electronic(s),” “computer,” “communication(s),” telecommunication(s), or similar modifiers in their titles.

    1. Curriculum
    The structure of the curriculum must provide both breadth and depth across the range of engineering topics implied by the title of the program.

    The curriculum must include probability and statistics, including applications appropriate to the program name; mathematics through differential and integral calculus; sciences (defined as biological, chemical, or physical science); and engineering topics (including computing science) necessary to analyze and design complex electrical and electronic devices, software, and systems containing hardware and software components.

    The curriculum for programs containing the modifier “electrical,” “electronic(s),” “communication(s),” or “telecommunication(s)” in the title must include advanced mathematics, such as differential equations, linear algebra, complex variables, and discrete mathematics.

    The curriculum for programs containing the modifier “computer” in the title must include discrete mathematics.

    The curriculum for programs containing the modifier “communication(s)” or “telecommunication(s)” in the title must include topics in communication theory and systems.

    The curriculum for programs containing the modifier “telecommunication(s)” must include design and operation of telecommunication networks for services such as voice, data, image, and video transport.

  • Engineering, General Engineering, Engineering Physics, Engineering Science, and Similarly Named Engineering Programs

    Lead Society: American Society for Engineering Education

    These program criteria apply to engineering programs that include “engineering (without modifiers),” “general engineering,” “engineering physics,” or “engineering science(s),” in their titles.

    There are no program-specific criteria beyond the General Criteria.

  • Engineering Management and Similarly Named Engineering Programs

    Lead Society: Institute of Industrial and Systems Engineers Cooperating Societies: American Institute of Chemical Engineers, American Society of Civil Engineers, American Society of Mechanical Engineers, Institute of Electrical and Electronics Engineers, Society of Manufacturing Engineers, and Society of Petroleum Engineers

    These program criteria apply to engineering programs that include “management” or similar modifiers in their titles.

    1. Curriculum
    The curriculum must include:

    • the engineering relationships between the management tasks of planning, organization, leadership, control, and the human element in production, research, and service organizations;
    • the stochastic nature of management systems; and
    • integrating management systems into a series of different technological environments.

    2. Faculty
    The major professional competence of the faculty must be in engineering, and the faculty should be experienced in the management of engineering and/or technical activities.

  • Engineering Mechanics and Similarly Named Engineering Programs

    Lead Society: American Society of Mechanical Engineers

    These program criteria apply to engineering programs that include “mechanics” or similar modifiers in their titles.

    1. Curriculum
    The curriculum must include mathematical and computational topics necessary to analyze, model, and design physical systems consisting of solid and fluid components under steady state and transient conditions.

    2. Faculty
    The program must demonstrate that faculty members responsible for upper-level professional courses maintain currency in their specialty area(s).

  • Environmental Engineering and Similarly Named Engineering Programs

    Lead Society: American Academy of Environmental Engineers and Scientists Cooperating Societies: American Institute of Chemical Engineers, American Society of Agricultural and Biological Engineers, American Society of Civil Engineers, American Society of Heating, Refrigerating and Air-Conditioning Engineers, American Society of Mechanical Engineers, SAE International, and Society for Mining, Metallurgy, and Exploration

    These program criteria apply to engineering programs that include “environmental,” “sanitary,” or similar modifiers in their titles.

    1. Curriculum
    The curriculum must include:

    a) Mathematics through differential equations, probability and statistics, calculus-based physics, chemistry (including stoichiometry, equilibrium, and kinetics), earth science, biological science, and fluid mechanics.
    b) Material and energy balances, fate and transport of substances in and between air, water, and soil phases; and advanced principles and practices relevant to the program objectives.
    c) Hands-on laboratory experiments, and analysis and interpretation of the resulting data in more than one major environmental engineering focus area, e.g., air, water, land, environmental health.
    d) Design of environmental engineering systems that includes considerations of risk, uncertainty, sustainability, life-cycle principles, and environmental impacts.
    e) Concepts of professional practice and project management, and the roles and responsibilities of public institutions and private organizations pertaining to environmental policy and regulations.

    2. Faculty
    The program must demonstrate that a majority of those faculty members teaching courses that are primarily design in content are qualified to teach the subject matter by virtue of professional licensure, board certification in environmental engineering, or by education and equivalent design experience.

  • Fire Protection and Similarly Named Engineering Programs

    Lead Society: Society for Fire Protection Engineers

    These program criteria apply to engineering programs that include “fire protection” or similar modifiers in their title.

    1. Curriculum
    The program must prepare graduates to have proficiency in the application of science and engineering to protect the health, safety, and welfare of the public from the impacts of fire. This includes the ability to apply and incorporate an understanding of the fire dynamics that affect the life safety of occupants and emergency responders and the protection of property; the hazards associated with processes and building designs; the design of fire protection products, systems, and equipment; the human response and behavior in fire emergencies; and the prevention, control, and extinguishment of fire.

    2. Faculty
    The program must demonstrate that faculty members maintain currency in fire protection engineering practice.

  • Geological and Similarly Named Engineering Programs

    Lead Society: Society for Mining, Metallurgy, and Exploration

    These program criteria apply to engineering programs that include “geological” or similar modifiers in their titles.

    1. Curriculum
    The curriculum must include:

    a) mathematics including differential equations, calculus-based physics, and chemistry, with application to geological engineering problems;

    b) geological science topics that emphasize geologic processes and the identification of minerals and rocks;

    c) visualization of and solutions to geological problems in three and four dimensions;

    d) engineering sciences including statics, properties/strength of materials, and geomechanics;

    e) principles of geology, elements of geophysics, geological and engineering field methods; and

    f) geological engineering design problems, which must include one or more of the following considerations:

      1. the distribution of physical and chemical properties of earth materials, including surface water, ground water (hydrogeology), and fluid hydrocarbons;
      2. the effects of surface and near-surface natural processes;
      3. the impacts of construction projects;
      4. the impacts of exploration, development, and extraction of natural resources, and consequent remediation; disposal of wastes; and other activities of society on these materials and processes, as appropriate to the program objectives.

    2. Faculty
    Evidence must be provided that the program’s faculty members understand professional engineering practice and maintain currency in their respective professional areas.

  • Industrial and Similarly Named Engineering Programs

    Lead Society: Institute of Industrial and Systems Engineers

    These program criteria apply to engineering programs that include “industrial” or similar modifiers in their titles.

    1. Curriculum

    The curriculum must provide both breadth and depth across the range of engineering science, computer science, and engineering design topics implied by the title and objectives of the program.

    The curriculum must include design, analysis, operation and improvement of integrated systems that produce or supply products or services in an effective, efficient, sustainable and socially responsible manner.

    The curriculum must utilize real-world experiences and business perspectives.

    The curriculum must include the topical areas of productivity analysis, operations research, probability, statistics, engineering economy, and human factors.

    2. Faculty
    The program must demonstrate that faculty members who teach core industrial engineering courses have an understanding of professional practice and maintain currency in their respective professional areas.

  • Manufacturing and Similarly Named Engineering Programs

    Lead Society: Society of Manufacturing Engineers

    These program criteria apply to engineering programs that include “manufacturing” and similar modifiers in their titles.

    1. Curriculum
    The program must include curricular content in the following areas:

    (a) materials and manufacturing processes: design of manufacturing processes that result in products that meet specific material and other requirements;
    (b) process, assembly and product engineering: equipment, tooling, and environment necessary for their manufacture;
    (c) manufacturing competitiveness: creation of competitive advantage through manufacturing planning, strategy, quality, and control;
    (d) manufacturing systems design: analyze, synthesize, and control manufacturing operations using statistical methods; and
    (e) manufacturing laboratory or facility experience: measurement of manufacturing process variables and development of technical inferences about the process.

    2. Faculty
    The program must demonstrate that faculty members maintain currency in
    manufacturing engineering practice.

  • Materials (1), Metallurgical (2), Ceramics (3) and Similarly Named Engineering Programs

    (1,2) Lead Society for Materials and Metallurgical Engineering Programs: The Minerals, Metals & Materials Society (3) Lead Society for Ceramics Engineering Programs: American Ceramic Society (1) Cooperating Societies for Materials Engineering Programs: American Ceramic Society, American Institute of Chemical Engineers, and American Society of Mechanical Engineers (2) Cooperating Society for Metallurgical Engineering Programs: Society for Mining, Metallurgy, and Exploration (3) Cooperating Society for Ceramics Engineering Programs: The Minerals, Metals & Materials Society

    These program criteria apply to engineering programs including “materials,” “metallurgical,” “ceramics,” “glass”, “polymer,” “biomaterials,” and similar modifiers in their titles.

    1. Curriculum
    The curriculum must prepare graduates to apply advanced science (such as chemistry, biology and physics), computational techniques and engineering principles to materials systems implied by the program modifier, e.g., ceramics, metals, polymers, biomaterials, composite materials; to integrate the understanding of the scientific and engineering principles underlying the four major elements of the field: structure, properties, processing, and performance related to material systems appropriate to the field; to apply and integrate knowledge from each of the above four elements of the field using experimental, computational and statistical methods to solve materials problems including selection and design consistent with the program educational objectives.

    2. Faculty
    The faculty expertise for the professional area must encompass the four major elements of the field.

  • Mechanical and Similarly Named Engineering Programs

    Lead Society: American Society of Mechanical Engineers

    These program criteria will apply to all engineering programs that include “mechanical” or similar modifiers in their titles.

    1. Curriculum

    In preparation for professional practice, the curriculum must include:

    1. principles of engineering, basic science, and mathematics (including multivariate calculus and differential equations);
    2. applications of these topics to modeling, analysis, design, and realization of physical systems, components or processes;
    3. coverage of both thermal and mechanical systems; and
    4. in-depth coverage of either thermal or mechanical systems.

     

    2. Faculty

    The program must demonstrate that faculty members responsible for the upper-level professional courses maintain currency in their specialty area(s).

  • Mining and Similarly Named Engineering Programs

    Lead Society: Society for Mining, Metallurgy, and Exploration

    These program criteria apply to engineering programs that include “mining” or similar modifiers in their titles.

    1. Curriculum

    The curriculum must include:

    1. mathematics through differential equations, calculus-based physics, general chemistry, and probability and statistics with application to mining engineering problems;
    2. geological science topics including characterization of mineral deposits, physical geology, structural or engineering geology, and mineral and rock identification and properties; and,
    3. engineering topics including:
      1. statics, dynamics, strength of materials, fluid mechanics, thermodynamics, and electrical circuits;
      2. complex engineering problems and engineering design tasks related to both surface and underground mining, including: mining methods, planning and design, ground control and rock mechanics, health and safety, environmental issues, materials handling, and mine ventilation;
      3. additional engineering topics incorporating complex engineering problems and engineering design tasks into topics such as rock fragmentation, mineral or coal processing, mine surveying, mine valuation, resource/reserve estimation, mine sustainability, and mine automation as appropriate to the program’s educational objectives.
      4. laboratory experience in geologic concepts, rock mechanics, mine ventilation, and other topics appropriate to the program’s objectives.

    2. Faculty
    Evidence must be provided that the program faculty understand professional engineering practice and maintain currency in their respective professional areas.

  • Naval Architecture, Marine Engineering, Ocean Engineering, and Similarly Named Engineering Programs

    Lead Society: Society of Naval Architects and Marine Engineers
    Cooperating Societies for Ocean Engineering: American Society of Civil Engineers and Institute of Electrical and Electronics Engineers

    These program criteria apply to engineering programs that include “naval architecture”, “marine engineering”, “naval engineering”, “maritime engineering”, “ocean engineering” or similar titles.

    1. Curriculum
    The structure of the curriculum must provide both breadth and depth across the range of engineering topics implied by the title of the program.

    The curriculum must include applications of probability and statistics, fluid mechanics, dynamics, and engineering design at the system level.

    The curriculum for programs with titles containing “naval architecture” must also include hydrostatics, structural mechanics, materials properties, energy/propulsion systems, and instrumentation appropriate to naval architecture.

    The curriculum for programs with titles containing “marine engineering”, “naval engineering”, “maritime engineering” or similar terms must also include energy/propulsion systems, materials properties, and instrumentation appropriate to marine engineering.

    The curriculum for programs with titles containing “ocean engineering” or similar terms must also include solid mechanics, hydrostatics, oceanography, water waves, and underwater acoustics.

    2. Faculty
    The program must demonstrate that faculty members have maintained currency in their specialty area.

  • Nuclear, Radiological, and Similarly Named Engineering Programs

    Lead Society: American Nuclear Society

    These program criteria apply to engineering programs that include “nuclear,” “radiological,” or similar modifiers in their titles.

    1. Curriculum
    The program must include the following curricular topics in sufficient depth for engineering practice:

    (a) mathematics, to support analyses of complex nuclear or radiological problems,
    (b) atomic and nuclear physics,
    (c) transport and interaction of radiation with matter,
    (d) nuclear or radiological systems and processes,
    (e) nuclear fuel cycles,
    (f) nuclear radiation detection and measurement,
    (g) nuclear or radiological system design.

    2. Faculty
    The program must demonstrate that faculty members primarily committed to the program have current knowledge of nuclear or radiological engineering by education or experience.

  • Optical, Photonic, and Similarly Named Engineering Programs

    Co-Lead Societies: SPIE, the International Society for Optical Engineering and Institute of Electrical and Electronic Engineers

    These program criteria apply to all engineering programs that include “optical,” “photonic,” or similar modifiers in their titles.

    1. Curriculum
    The structure of the curriculum must provide both breadth and depth across the range of engineering topics implied by the title of the program.

    The curriculum must include theoretical instruction and laboratory experience in geometrical optics, physical optics, optical materials, optical devices and systems, and photonic devices and systems.

    The curriculum must include chemical science, calculus-based physics, multivariable calculus, differential equations, linear algebra, complex variables, probability, statistics and their application in solving engineering problems.

    The curriculum must also include design experiences that incorporate the application of engineering principles to model, analyze, design and realize optical and/or photonic devices and/or systems.

    2. Faculty
    Faculty members who teach courses with significant design content must be qualified by virtue of design experience as well as subject matter knowledge.

  • Petroleum and Similarly Named Engineering Programs

    Lead Society: Society of Petroleum Engineers

    These program criteria apply to engineering programs that include “petroleum,” “natural gas,” or similar modifiers in their titles.

    1. Curriculum
    The curriculum must provide both breadth and depth across the range of engineering topics implied by the title and objectives of the program.

    The curriculum must include:

    (a) mathematics through differential equations, probability and statistics, fluid mechanics, strength of materials, and thermodynamics;
    (b) design and analysis of well systems and procedures for drilling and completing wells;
    (c) characterization and evaluation of subsurface geological formations and their resources using geoscientific and engineering methods;
    (d) design and analysis of systems for producing, injecting, and handling fluids;
    (e) application of reservoir engineering principles and practices for optimizing resource development and management; and
    (f) the use of project economics and resource valuation methods for design and decision making under conditions of risk and uncertainty.

  • Software and Similarly Named Engineering Programs

    Lead Society: CSAB Cooperating Society: Institute of Electrical and Electronics Engineers

    These program criteria apply to engineering programs that include “software” or similar modifiers in their titles.

    1. Curriculum
    The curriculum must provide both breadth and depth across the range of engineering and computer science topics implied by the title and objectives of the program.
    The curriculum must include computing fundamentals, software design and construction, requirements analysis, security, verification, and validation; software engineering processes and tools appropriate for the development of complex software systems; and discrete mathematics, probability, and statistics, with applications appropriate to software engineering.

    2. Faculty
    The program must demonstrate that faculty members teaching core software engineering topics have an understanding of professional practice in software engineering and maintain currency in their areas of professional or scholarly specialization.

  • Surveying and Similarly Named Engineering Programs

    Lead Society: National Society for Professional Surveyors Cooperating Society: American Society of Civil Engineers

    These program criteria apply to engineering programs that include surveying, geomatics, or similar modifiers in their titles.

    1. Curriculum

    The curriculum must include:

    1. Mathematics, including statistics, to support analyses of complex surveying/geomatics problems;
    2. Historical and legal elements of land ownership, particularly where surveying/geomatics are an integral part;
    3. Data science and analysis for conformance of precision and accuracy;
    4. Data structure, format, storage, management, publication, visualization, and the related legal responsibilities to the public;
    5. Modern measurement and design technologies necessary to model, locate or construct features above, below or on the Earth’s surface;
    6. Added depth in a minimum of four subject areas, consistent with the program’s educational objectives, chosen from the following:
      • boundary or land surveying,
      • engineering surveys,
      • photogrammetry and remote sensing,
      • geodesy and geodetic surveying,
      • mapping including map projections and coordinate systems,
      • geospatial data science and land information systems,
      • civil engineering topics that assist the student in meeting the requirements for licensure in the state or region.

    2. Faculty

    Programs must demonstrate that faculty members teaching courses that are primarily design or professional practice in content are qualified to teach the subject matter by virtue of professional licensure or by a combination of educational and professional experience.

  • Systems and Similarly Named Engineering Programs

    Co-Lead Societies: American Society of Mechanical Engineers, CSAB, Institute of Electrical and Electronics Engineers, Institute of Industrial and Systems Engineers, ISA, International Council on Systems Engineering, and SAE International

    These program criteria apply to engineering programs that include “systems (without other modifiers)” in their title.

    There are no program- specific criteria beyond the General Criteria.

IV. Proposed Changes to the Criteria

The following sections presents proposed changes to these criteria as approved by the ABET Engineering Area Delegation on October 31, 2020 for a one year review and comment period. Comments will be considered until June 15, 2021. The ABET Engineering Delegation will determine, based on the comments received and on the advice of the EAC, the content of the adopted criteria. The adopted criteria will then become effective following the ABET Engineering Area Delegation meeting in the fall of 2021 and would first be applied by the EAC for accreditation reviews during the 2022-2023 accreditation review cycle.

  • Proposed Program Criteria for Fire Protection and Similarly Named Engineering Programs

    Lead Society: Society for Fire Protection Engineers

    These program criteria apply to engineering programs that include “fire protection” or similar modifiers in their title.

    1. Curriculum

    The program curriculum must include topics prepare graduates to have proficiency in the application of science and engineering to protect the health, safety, and welfare of the public from the impacts of fire, including the principles of: 1) fire science; 2) human behavior and evacuation; 3) fire protection systems; and 4) fire protection analysis.

    Curriculum topics must also include the integration of the above four principles to solve field problems using computational, experimental and performance-based design methods.

    . This includes the ability to apply and incorporate an understanding of the fire dynamics that affect the life safety of occupants and emergency responders and the protection of property; the hazards associated with processes and building designs; the design of fire protection products, systems, and equipment; the human response and behavior in fire emergencies; and the prevention, control, and extinguishment of fire.

     

    2. Faculty
    The program must demonstrate that faculty members maintain currency in fire protection engineering practice.

    Comments relative to the proposed criteria should be submitted by the link for comments available here and on the Accreditation Changes section of the ABET website.

  • Proposed Program Criteria for Geological Engineering and Similarly Named Engineering Programs

    Lead Society: Society for Mining, Metallurgy, and Exploration

    These program criteria apply to engineering programs that include “geological” or similar modifiers in their titles.

    1. Curriculum

    The curriculum must include:

    g) mathematics including differential equations, calculus-based physics, and chemistry, with application to geological engineering problems;

    h) geological science topics that emphasize geologic processes and the identification of minerals and rocks;

    i) visualization of and solutions to geological problems in three and four dimensions;

    j) engineering sciences including statics, properties/strength of materials, and geomechanics;

    k) principles of geology, elements of geophysics, geological and engineering field methods; and

    l) geological engineering design problems, which must include one or more of the following considerations:

    v. the distribution of physical and chemical properties of earth materials, including surface water, ground water (hydrogeology), and fluid hydrocarbons;

    vi. the effects of surface and near-surface natural processes;

    vii. the impacts of construction projects;

    viii. the impacts of exploration, development, and extraction of natural resources, and consequent remediation; disposal of wastes; and other activities of society on these materials and processes, as appropriate to the program objectives.

    2. Faculty
    Evidence must be provided that the program’s faculty members understand professional engineering practice and maintain currency in their respective professional areas. The program must demonstrate that faculty members teaching courses that are primarily design in content are qualified to teach the subject matter by virtue of professional licensure, or by education and design experience. 

    Comments relative to the proposed criteria should be submitted by the link for comments available here and on the Accreditation Changes section of the ABET website.

  • Proposed Program Criteria for Materials (1), Metallurgical (2), Ceramics (3) and Similarly Named Engineering Programs

    Lead Societies: (1,2) Lead Society for Materials and Metallurgical Engineering Programs: The Minerals,
    Metals & Materials Society
    (3) Lead Society for Ceramics Engineering Programs: American Ceramic Society
    (1) Cooperating Societies for Materials Engineering Programs: American Ceramic Society, American Institute of Chemical Engineers, and American Society of Mechanical Engineers
    (2) Cooperating Society for Metallurgical Engineering Programs: Society for Mining, Metallurgy, and Exploration
    (3) Cooperating Society for Ceramics Engineering Programs: The Minerals, Metals & Materials Society

    These program criteria apply to engineering programs including “materials,
    “metallurgical (except extractive metallurgical),, “ceramics,, “glass”,”, “polymer,, “biomaterials,, and similar modifiers in their titles.

    1. Curriculum

    The curriculum must include topics that: prepare graduates to apply advanced science (such as chemistry, biology and physics), computational techniques and engineering principles to materials systems implied by the program modifier, e.g., ceramics, metals, polymers, biomaterials, composite materials; to integrate the understanding of the
    scientific and engineering principles

    a) underlieying the four major elements of the field: (i.e., structure, properties, processing, and performance) related to material systems, as appropriate to the program title; field

    b) employ selection and design of materials, processes, or a combination of materials and processes; and 

    c) ; to apply and integrate knowledge from each of the above four elements of the field using experimental, statistical, and computational and statistical methods to solve materials problems. including selection and design consistent with the program educational objectives.

    2. Faculty
    ProgramThe faculty expertise for the professional area must encompass the four major elements of the field.

    Comments relative to the proposed criteria should be submitted by the link for comments available here and on the Accreditation Changes section of the ABET website.

  • Proposed Program Criteria for Mineral Processing, Extractive Metallurgical and Similarly Named Engineering Programs

    Lead Society: Society for Mining, Metallurgy, and Exploration

    Cooperation Society for Extractive Metallurgical Engineering Programs: The Minerals, Metals & Materials Society

    These program criteria apply to engineering programs that include “mineral processing,” “extractive metallurgical,” or similar modifiers in their titles.

    1. Curriculum

    The curriculum must include:

      1. mathematics through differential equations, calculus-based physics, general chemistry, and probability and statistics with engineering applications appropriate to the program name;
      2. geological sciences, including general geology and mineralogy;
      3. engineering topics:
          1. statics and fluid mechanics;
          2. fundamental processing topics, including mass and heat balances, materials characterization and analysis, chemical or metallurgical thermodynamics, energy and mass transfer, and kinetic reactions;
          3. process engineering topics, including flowsheet design, instrumentation and control, comminution, solid/liquid separation, and physical separations including flotation; and
          4. other engineering topics, including materials handling and engineering economics.

         

      4. Mineral processing laboratory experiences including laboratory methods, design of experiments, and applications of computer software, as appropriate to the program name.

     

    Programs containing the modifier “extractive metallurgical” or similar terminology in the title must include hydrometallurgy, electrometallurgy, and pyrometallurgy, with appropriate associated laboratory experiences.

    Comments relative to the proposed criteria should be submitted by the link for comments available here and on the Accreditation Changes section of the ABET website.

  • Proposed Program Criteria for Mining and Similarly Named Engineering Programs

    Lead Society: Society for Mining, Metallurgy, and Exploration

    These program criteria apply to engineering programs that include “mining” or similar modifiers in their titles.

    1. Curriculum

    The curriculum must include:

    d) mathematics through differential equations, calculus-based physics, general chemistry, and probability and statistics with application to mining engineering problems;

    e) geological science topics including characterization of mineral deposits, physical geology, structural or engineering geology, and mineral and rock identification and properties; and,

    f) engineering topics, including:

    i. statics, dynamics, strength of materials, fluid mechanics, thermodynamics, and electrical circuits;

    ii. complex engineering problems and engineering design tasks related to both surface and underground mining, including: mining methods, planning and design, ground control and rock mechanics, health and safety, environmental issues, materials handling, and mine ventilation;

    iii. additional engineering topics incorporating complex engineering problems and engineering design tasks into topics such as rock fragmentation, mineral or coal processing, mine surveying, mine valuation, resource/reserve estimation, mine sustainability, and mine automation as appropriate to the program’s educational objectives.

    iv. laboratory experience in geologic concepts, rock mechanics, mine ventilation, and other topics appropriate to the program’s objectives.

    2. Faculty
    Evidence must be provided that the program faculty understand professional engineering practice and maintain currency in their respective professional areas.  The program must demonstrate that faculty members teaching courses covering mine ventilation and rock mechanics, as well as those courses that are primarily design in content, are qualified to teach the subject matter by virtue of professional licensure, or by education and design experience.

    Comments relative to the proposed criteria should be submitted by the link for comments available here and on the Accreditation Changes section of the ABET website.

  • Proposed Program Criteria for Systems and Similarly Named Engineering Programs

    Co-Lead Societies: American Society of Mechanical Engineers, CSAB,
    Institute of Electrical and Electronics Engineers, Institute of Industrial and Systems Engineers, ISA, International Council on Systems Engineering, or SAE International

    These program criteria apply to engineering programs that include “systems (without
    other modifiers)” in their title.


    There are no program- specific criteria beyond the General Criteria.

    These program criteria apply to engineering programs that include “systems” or “and systems” in their titles, with the exception of those that use the word “systems” with a direct modifier, such as mechanical systems, biological systems, control systems, etc.

    1. Curriculum

    The structure of the curriculum must provide both breadth and depth across the range of engineering topics implied by the title of the program.

    The curriculum must include the following topics:

    • Advanced mathematics, including probability and statistics, and computing fundamentals, with practical applications thereof;
    • Engineering topics necessary to define, synthesize, analyze, design, and evaluate complex systems containing hardware and software, and human elements (where appropriate), in a holistic manner across the lifecycle.
    • Systems analysis topics, such as decision analysis, risk analysis (cost, schedule and performance), trade-off analysis, optimization, modeling and simulation, and sensitivity analysis techniques.

    2. Faculty

    The program shall demonstrate that those faculty members teaching courses that are primarily design in content are qualified to teach the subject matter by virtue of education and experience or professional licensure.

    Comments relative to the proposed criteria should be submitted by the link for comments available here and on the Accreditation Changes section of the ABET website.